Deflocculation of Cellulosic Suspensions with Anionic High Molecular Weight Polyelectrolytes
نویسندگان
چکیده
Pulp fibers have a strong tendency to form flocs in water suspensions, which may cause their undesirable distribution in the paper sheets. This flocculation can be controlled by adding, e.g., an anionic high molecular weight polyelectrolyte in the fiber suspension. The objective of this study was to investigate the effect of anionic polyelectrolytes on deflocculation kinetics, dewatering, and rheology of cellulosic suspensions. The results showed that both microfibrillated cellulose (MFC) and macroscopic pulp fibers can be dispersed using anionic polyacrylamides (APAM). The higher the molecular weight of APAM, the higher is its effect. Adsorption experiments illustrate that anionic polyelectrolytes do not strongly attach to cellulose surfaces but they can be partly entrapped or can disperse nanocellulose fibrils (increase the swelling). Based on rheological experiments, the MFC network became weaker with APAM addition. Similar to the flocculation mechanism of cellulosic materials with polymers, deflocculation is also time dependent. Deflocculation occurs very rapidly, and the maximum deflocculation level is achieved within a few seconds. When mixing is continued, the floc size starts to increase again. Also dewatering was found to be strongly dependent on the contact time with the APAMs. These results indicate that the positive effects of anionic deflocculants are quickly diminished due to shear forces, and therefore, the best deflocculating effect is achieved using as short a contact time as possible.
منابع مشابه
Multilayers of Low Charge Density Polyelectrolytes on Thin Films of Carboxymethylated and Cationic Cellulose
Multilayers with low charge density polyelectrolytes assembled on thin films of cellulose were studied by piezoelectric microgravimetry. The substrates were produced from colloidal suspensions of cotton fibers before and after modification with cationic and anionic groups via epoxy intermediates of quaternary ammonium and carboxymethylation, respectively. Two different levels of ionicity were u...
متن کاملInfluence of adsorbed polyelectrolytes on pore size distribution of a water-swollen biomaterial†
Many biomaterials exhibit pronounced swelling and consequently pronounced porous structure when exposed to water. Characterization and tuning of the porosity are important for the fundamental understanding of the behaviour of the biomaterials as well as for many of their applications, both traditional and novel. Here, the porous structure of cellulosic fibres (chemical wood pulp) was analysed i...
متن کاملFlocculation and Redispersion of Cellulosic Fiber Suspensions: a Review of Effects of Hydrodynamic Shear and Polyelectrolytes
Cellulosic fibers in aqueous suspensions are subject to flocculation effects that involve two contrasting scales of dimension. The net effect of flocculation determines how uniformly fibers can become formed into a sheet during the manufacture of paper. At a macroscopic level, the highly elongated shape of typical wood-derived fibers in agitated suspensions can give rise to frequent inter-fiber...
متن کاملThe deflocculation of kaolin suspensions - the effect of various electrolytes
The deflocculation effect of conventional additives to kaolin suspensions is evaluated from the results standard rheological measurements. Several widely used electrolytes (NaOH, Na2C03, Na2Si03, SHMP = sodium hexametaphosphate, and CMC = sodium salts of carboxymethylcellulose) have been tested. The optimal concentrations of these deffloculants, in respect to reaching the maximum reduction of i...
متن کاملSteel Coated with Cationic Poly (Ethylenimine) (PEI) and Anionic Poly (Vinylsulfate) (PVS) Polyelectrolyte Multilayer Nanofilm with Different Benzotriazole Inhibitor Concentrations
Nano-films consisting of an alternating sequence of positively and negatively charged polyelectrolyteshave been prepared by means of the electrostatic layer-by-layer sequential assembly technique on mildsteels. The mild steels were pretreated electrochemically to modify the mild steel surface. The modificationof the mild steel surface resulted in increasing the adhesion of the obtained nano-fil...
متن کامل